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Abstract 

 
Dyslexia is a neurocognitive disorder characterized by severe and persistent reading difficulties despite 

normal intellectual functioning and appropriate schooling. To better understand the neural underpinnings 
of dyslexia, this study investigated the neurophysiological differences between normal readers  

(NR group) and readers with dyslexia (DYS group) by analyzing their brain activity at eyes-closed resting 

state using mobile electroencephalography (mEEG). The results revealed that the DYS group exhibited an 

overall larger power activation in the theta and beta frequency bands, as well as a dominance of delta, 

theta, and beta frequencies across all scalp sites. Increased delta and theta activity was found in the left 

frontal region, whereas significantly stronger beta power was found in the right hemisphere. Moreover, 

weaker alpha activity was observed in the left frontal and right posterior regions. These findings provide 

evidence of an atypical and less integrated linguistic network in dyslexia. 
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1. Introduction 
 

Dyslexia is a neurodevelopmental disorder characterized by severe and persistent reading deficits 

in both children and adults despite normal intellectual functioning and having been provided with 

educational opportunities (Pina Rodrigues et al., 2017). As a multifaceted and heterogeneous disorder that 

persists across the lifespan, it has been carefully and intensively studied by researchers who have 

attempted to determine its genetic, neurobiological, and cognitive components (Snowling, 2013). 

One approach to understanding dyslexia is through analyzing resting state activity, an area of 

interest in cognitive neuroscience wherein intrinsic functional connectivity at rest permits the brain to 

allocate resources and prepare itself for changes stemming from the internal or external environment. This 

allows researchers to make predictions about the resting state network as a determining factor of 

underlying neural activity. Research in this area has provided valuable evidence on deviant network 

organization for neurological disorders and generated much understanding about the neural characteristics 

of healthy brain development (Alcauter et al., 2017; Gracia-Tabuenca, Moreno, Barrios, & Alcauter, 
2018). Brain activity can be obtained using mobile electroencephalography (mEEG), a neuroimaging tool 

that allows researchers to observe patterns of brain frequencies. Each frequency band has a purpose and 

an underlying function: A dominance of slow frequencies (i.e., delta and theta) when one is engaged in a 

cognitive task would suggest slow brain activity and possibly even cognitive dysfunction (Kamel  

& Saeed Malik, 2015), whereas faster frequencies (i.e., beta and gamma) are dominant when the brain is 

actively processing information (Magazzini & Singh, 2018). The alpha band, which is dominant at resting 

state, is associated with cortical and behavioral inhibition (Bastos et al., 2015, Marshall, O’Shea, Jensen, 

& Bergmann, 2015). These frequencies are used to explain the differences in brain activation between 

normal controls and those with neurological deficits. 

Results from resting state EEG studies on dyslexia and other learning disorders have typically 

reported greater delta and theta power as well as weaker alpha and beta power (Papagiannopoulou  
& Lagopoulos, 2016; Roca-Stappung, Fernandez, Bosch-Bayard, Harmony, Ricardo-Garcell, 2017). 

Studies generally indicate remarkably elevated low frequency activity, particularly in the theta band, in 

the left hemisphere which reflects an atypical linguistic network, implicating the presence of brain 

abnormalities in children with dyslexia prior to reading acquisition (De Vos et al., 2017; Fraga González 
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et al., 2016; Morillon, Liégeois-Chauvel, Arnal, Bénar, & Giraud, 2012; Pagnotta et al., 2015; van der 

Mark et al., 2011). Babiloni et al. (2012) reported abnormal alpha rhythms, whereas a number of studies 

have observed abnormally stronger beta power in the right hemisphere, indicating  

task-related overexcitability (De Vos et al., 2017; Dimitriadis et al., 2016, 2018; Hoeft et al., 2011; 

Jiménez-Bravo et al., 2017; Lizarazu et al., 2015; Power, Colling, Mead, Barnes, & Goswami, 2016; 

Simos et al., 2011). 

 

2. Method 

 

2.1. Participants 
The participants were divided the Dyslexia (DYS) group (n = 5; mean age = 9.61; SD = 1.7) and 

the Normal Reader (NR) group (n = 4 mean age = 9.61; SD = 1.00). For both groups, non-verbal IQ 

results obtained using the Raven’s Colored Matrices (Raven, Raven, & Court, 2003) were found to be 

within the normal range (at least at 75th percentile). The DYS group had been previously diagnosed with 
Specific Learning Disorder with an impairment in reading by a professional (medical doctor, 

clinical/educational psychologist, or special educator/reading specialist). The NR group, on the other 

hand, presented with no history of reading difficulties. All participants were male, right-handed, with 

normal vision (as previously assessed by their physicians), and free of any co-morbid conditions, such as 

attention deficit/hyperactivity disorder, autism spectrum disorders, and any speech/language and visual 

impairments. Furthermore, parental consent and child assent were obtained before data gathering. 

 

2.2. Data collection and analysis 
Brain signals were obtained by the Emotiv EPOC Neuroheadset (Emotiv Systems, Inc., 2013),  

a non-invasive, high-resolution, neuro-signal acquisition and processing wireless headset designed for 

contextualized research (see Figure 1). It has 14 channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 

FC6, F4, F8, and AF42) distributed according to the internationally accepted 10–20 system of electrode 

placement and includes two references in the CMS/DRL noise cancellation configuration P3/P4 locations. 

Only 12 channels were included in the study (i.e., T7 and T8 were excluded). 

 
Figure 1. The Emotiv EPOC Neuroheadset and its scalp locations. 

 

 

 

Data were transferred via Bluetooth to the computer and raw EEG data were acquired using the 

EmotivPRO software. Further signal processing was carried out using EEGLAB, an open source 

MATLAB toolbox for processing data from EEG. The EEG recordings were segmented into epochs to be 

extracted, visually inspected, and cleaned for artifacts. Absolute power analyses using fast Fourier 

transform (FFT) for delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–25 Hz).  

Mann–Whitney U tests were performed using IBM SPSS Statistics version 25.0. The participants wore 

the EPOC headset throughout the experiment. Before putting on the headset, the 14 electrode recesses 
were fitted with a moist felt pad. The headset was then placed on the participant’s head and subjected to 

software set-up. After verifying that the built-in battery was fully charged and the wireless signal 

reception was reported as good, the experiment began. Each participant wore the headset for five minutes. 
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3. Results 
 

Significant group differences were observed for the theta (U = 1, p = .03) and beta (U = 0,  

p = .01) frequency bands, wherein the DYS group exhibited overall stronger power for these bands. Tests 

comparing electrode sites indicate that the DYS group obtained significantly stronger theta power in the 

frontal and left parietal regions. Stronger beta power was mostly observed in the right frontal and left 

parietal region. On the other hand, the NR group demonstrated stronger alpha power values in the left 

frontal and right occipital regions. Significant inter- and intra-hemispheric differences were limited to the 
delta, theta, and alpha bands (see Figure 2). For the DYS group, delta power is significantly  

left-lateralized in the frontal region, whereas theta power is bilaterally distributed. Alpha and beta power 

are notably right-lateralized. The NR group, on the other hand, demonstrate a more stable resting 

network. 
 
Figure 2. Power distributions according to frequency band for Resting State. Power (in dB) is represented by colors 

(dark red = very high, orange = high, yellow = average, light blue = low, dark blue = very low). 

 

 
 

4. Discussion 

 
The results revealed that the DYS group exhibited an overall larger power activation in the theta 

and beta frequency bands, as well as a dominance of delta, theta, and beta frequencies across all scalp 

sites. In the DYS group, increased delta and theta activity was found in the left frontal region. 

Abnormalities in the theta band (i.e., overactivation) at resting state have been implicated as a distinct 

neural signature in dyslexia, suggesting a less integrated network, as well as reduced communication in 
readers with dyslexia compared to controls. Thus, the observed increase in low frequency activity during 

eyes closed resting state in children with dyslexia is a strong indicator of the presence of an atypical 

network (De Vos et al., 2017; Fraga González et al., 2016; Pagnotta et al., 2015; Papagiannopoulou  

& Lagopoulos, 2016). The frontal reading network involves the left inferior frontal gyrus which plays a 

key role in speech articulation. Left-hemispheric hypoactivation characterized by an abnormal modulation 

of delta and theta frequencies is reflective of altered connectivity patterns that have been found to have 

crucial consequences in processing speech input (van der Mark et al., 2011). 

An attenuation of beta frequencies was observed in the left hemisphere as compared to the right 

hemisphere. The current findings agree with other studies that have reported abnormally stronger beta 

power in the right hemisphere (De Vos et al., 2017; Dimitriadis et al., 2013, 2016, 2018; Jiménez-Bravo 

et al., 2017; Lizarazu et al., 2015; Power et al., 2016). At rest, this right-lateralized overexcitability may 
be attributed to task-related overactivation in the right hemisphere (Hoeft et al., 2011; Simos et al., 2011). 

Moreover, weaker alpha activity was observed in the DYS group compared to the NR group, especially in 

the left frontal and right posterior regions. Comparable results were obtained by Babiloni et al. (2012) and 

Papagiannopoulou and Lagopoulos (2016). 
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5. Conclusion 

 
Analyzing eyes-closed resting state EEG rhythms is essential to better understand the role of 

abnormal cortical sources in brain-based deficits. The findings of this study confirmed a less integrated 

language network as evidenced by a dominance of theta activity in the left frontal region at resting state in 
children with dyslexia. Moreover, atypical alpha and beta activity were also observed. More studies are 

needed to further explore the neurophysiological characteristics of resting state activity in children with 

dyslexia.   
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