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Abstract 

The Model of Hierarchical Complexity (MHC) is one post-Piagetian theory that shows that humans 

develop through stages beyond post-formal reasoning. At each developmental transition, simpler 

knowledge self-organizes into more complex knowledge without overwriting itself, however, the nature 

of transitions is poorly understood. We used neural networks to simulate this stage incremental process 

and to explore whether conclusions about transitions could be taken from the developing structure of the 

model, specifically when solving problems below and above formal reasoning. We simulated stage-wise 

human performance on the balance-beam test. The MHC analyzed the order of hierarchical complexity 

(OHC) of balance-beam tasks, identifying 4 OHC subtasks (9, 10, 11, and 12), each being solved by 

individuals at the following stages: concrete (stage-9), abstract (stage-10), formal (stage11) and 

systematic (stage-12). Hence, two stages below formal, where individuals operate with concrete 

information until they transform it into abstract information, and two stages above formal, where 

individuals operate with abstract information. In our method, we segregated the input set into the four 

disjoint OHC subsets. Then, we trained the minimal neural network model structure to solve each OHC 

subset separately. The best performing model for each OHC subset was selected and the evolving 

structure across sequential models was evaluated. Developmental transitions are represented by the 

recruitment of new neurons and connections from one OHC network to the next. First, results showed that 

segregating inputs by disjoint OHC led to the best performance of networks in the formal-order subtasks 

(torque difference calculus) among the literature. Second, transitions from concrete to abstract rely mostly 

upon an increase of memory resources of the existing connections. From abstract to formal and from 

formal to systematic, there is an increase in the number of neurons and connections. More than one 

transition pattern was found, which points towards the dynamic of self-organization. We either observed 

that there is an increase of 120% in both the number of neurons and connections from abstract to formal 

and a decrease of 50% from formal to systematic or that there is an increase of 80% in the number of 

neurons and connections, which maintains stable during the systematic performance. Limitations of this 

work concern the operations that were being learned at each OHC subtask, which conflict with the 

mathematical nature of neural network models. Even so, the scaling of network elements is worth 

exploring by simulating further OHC subtasks. 

Keywords: Stage of development, developmental transitions, simulation, neural networks, complexity. 

1. Introduction

Human cognition is incremental in nature and dependent upon learning, experience, and 

biological maturation (Commons & Pekker, 2008; Inhelder & Piaget, 1958; Klahr & Siegler, 1978). 

Developmental psychology theories soon suggested that human cognition passes through a series of steps 

(or stages). These stages are generally defined according to the problem-solving capabilities of 
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individuals, either within or across domains (T. Dawson et al., 2003). “Stage” is assessed through sets of 

specifically designed problem-solving instruments that span through different domains (Giri et al., 2014). 

Since Piaget’s experiments, these instruments have been improved, have progressively uncovered the 

building blocks of human cognition and have increased their power of explanation of how these building 

blocks develop throughout life (Dawson-Tunik et al., 2005). Since the 80’s, this knowledge has given rise 

to computational models of cognitive development using neural networks, enriching the advances of the 

discipline of artificial intelligence (McClelland, 1988, 1995; McClelland & Jenkins, 1991). In fact, if we 

overlap the disciplines of developmental psychology and artificial intelligence, an immediate conclusion 

is that in order to maximize the similitude between artificial models and human cognition, one should 

adopt the longitudinal perspective-taking of learning and model the development of cognitive abilities 

(Leite, 2019; Leite & Rodrigues, 2018). The difficulty of this is that while stages of development have 

been identified by different theories with little variation, the dynamics of stage transition are still poorly 

understood. No theoretical or experimental references exist with sufficient detail that can inform 

simulation works (Maas & Hopkins, 2011). In fact, recent perspectives point towards the increasing 

validity of complex systems approach, where it is not so much a sequence of operations that is identified, 

but a whole network of interdependencies that gets modified (Mitchell, 1998). This present work 

addresses the developmental aspect of problem solving in an artificial learning model, exploring the 

dynamics of stage transition from the perspective of complex systems. We used neural networks to 

simulate this stage incremental process and to explore whether conclusions about transitions could be 

taken from the developing structure of the model, specifically when solving problems below and above 

formal reasoning. 

The specific objective concerned the quantification of stage transition by observing the 

progression of the structure of the model as it learned increasingly complex problems. This was done by 

identifying the elements of the neural networks model structure while solving each order of complexity 

problem, with order of complexity being defined by the Model of Hierarchical Complexity (MHC). Three 

specific developmental transitions were targeted, concrete to abstract, abstract to formal, and formal to 

post-formal. 

 

1.1. The Model of Hierarchical Complexity 
One important developmental psychology theory is called Model of Hierarchical Complexity 

(MHC). It is a general-stage theory that has been extensively tested for assessing human development in 
different domains of knowledge and for creating different applications 
(https://www.dareassociation.org/). The MHC proposes that the assessment of developmental stage starts 
by measuring the complexity of problems to solve. This measure is a one-dimensional variable called the 
Order of Hierarchical Complexity (OHC) (Commons & Pekker, 2008). Problem complexity can be 
attributed a discrete value between 0 and 16. Hence, in total, 17 orders of hierarchical complexity have 
been found, which stand for identifying 17 stages of development. The highest problem complexity that 
an agent is able to successfully solve will be used for determining the stage of development of that agent, 
a human, non-human animal, or machine. The OHC of a problem is defined according to three simple 
axioms and further detailed in the literature (Commons, Gane-McCalla, et al., 2014; Commons, Li, et al., 
2014). The MHC is reflected in the concepts and dynamics of complex systems theory. First, it 
differentiates horizontal and hierarchical complexity, assuming that only hierarchical complexity 
participates in stage transition (Commons & Pekker, 2008). This follows from the observation that only 
when two or more lower-order elements are combined, a higher-order stage emerges in a self-organizing 
way, reason why it has been difficult to trace the stage transition developmental route. There is evidence 
that stage is imprinted in the brain as a specific pattern of brain activation (Harrigan & Commons, 2014; 
Ribeirinho Leite et al., 2016), but this mapping has not been identified yet, let alone the process of 
transition from one mapping to the emergent one. Furthermore, the MHC has systematically observed in 
human behaviour that stage of development, as previously defined, acts as an attractor of the system. This 
means that the problems encountered in the environment will be perceived with a given complexity and 
solved accordingly. For example, a child and an adult facing the same situation will have different ways 
of perceiving and responding to it. The adult’s stage, supposedly higher than the child’s, acts as an 
attractor in the way that the adult is automatically led to be in the situation through the lens of their higher 
stage, unless they focus on assuming the child’s lens to improve communication. 

 

2. Methodology 

 
We simulated the balance beam test, a developmental test applied to children. As the name 

indicates, the test is a balance beam that is presented to the child with different possible configurations of 
weights placed at different distances on each side of the fulcrum. The child should guess whether the 
beam would fall right, left, or balance if supporting blocks were removed from below. Some 
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configurations are more difficult to guess than others because they display a more complex distribution of 
weights throughout the pegs. Extensive research on developmental psychology has shown that children 
respond to more difficult configurations of the test as they develop (Commons et al., 1995;  
Dawson-Tunik et al., 2010; Klahr & Siegler, 1978; Siegler & Chen, 2002). The MHC clearly 
characterizes difficulty in the balance beam problem by the mathematical operations that should be used 
to correctly predict the result of a given configuration (Dawson-Tunik et al., 2010), such as counting (at 
the concrete-stage-9), sum (at the abstract-stage-10), multiplication (at the formal-stage-11), and the 
distributive law (at the systematic-stage-12). 

The simulation method we propose requires three steps. First, we simulated the balance beam 
with all possible configurations. Second, we grouped input vectors that represented problem 
configurations of the same order of complexity. Third, we created disjoint subsets of sequential OHC 
problems, following the order in which they are solved in the developmental trajectory. Fourth, we 
trained independent neural network models for solving each OHC problem, ensuring that the minimal 
model was found. We allowed the models to have a maximum of two layers, 20 units per layer, and 5 
different patterns of connections where the simplest one was a pattern of feedforward connections. Fifth, 
we compared neural network models that solved adjacent OHC problems. Lastly, we quantified stage 
transitions based on the structural changes from one model to the next, both in terms of neurons and in 
terms of active connections. 

 

3. Results 

 
Among the best performing networks for each OHC sub-problem, some have been selected 

based on how their components (layers, units and connections) could be hierarchically organized across 
OHC. Networks performed with 100% accuracy for all stages but the systematic stage, where a slight 
decrease was observed. Table 1 represents the obtained results. Table 2 presents this quantification, done 
by a process of discretization. 

 
Table 1. Numeric description of the selected networks. 

 

OHC Option 1 Option 2 Option 3 

 Nodes Connections Nodes Connections Nodes Connections 

Concrete 

stage 9 4 6 4 6 4 6 

Abstract 

stage 10 4 8 4 8 4 8 

Formal 

stage 11 
12 135 11 103 8 88 

Systematic 

stage 12 

16 

(2 layers) 

195 

(2 layers) 

19 

(2 layers) 

194 

(2 layers) 

16 

(2 layers) 

195 

(2 layers) 

 

Table 2. Discretization of the transition process. 
 

Transitions Option 1 Option 2 Option 3 

 Nodes Connections Nodes Connections Nodes Connections 

First 0 2 0 2 0 2 

Second 8 127 7 95 4 80 

Third 4 60 8 91 8 107 

 
In terms of how transitions are quantified in each option, given that in the first transition there 

was no change in the number of nodes, the second transition departs from a comparison with zero. 

Comparing to zero is an absolute increase. Hence, in each option, we are quantifying the increase in the 

number of in relation to the increase in the number of connections. In option 1, from abstract to formal 

there was an increase of 120% in both the number of neurons and connections and, from formal to 

systematic, there was a decrease of 50%. In option 2, from abstract to formal, there was an increase of 

approximately 80% to 90% in the number of neurons and connections, which remains stable during the 

systematic performance. In option 3, from abstract to formal, there was an increase of 80% in the number 

of neurons and connections, which, in the transition to the systematic stage, increased again by 50% in the 

number of nodes and in 25% in the number of connections. 

Psychological Applications and Trends 2023

325



4. Discussion and conclusion 

 
A methodological proposal has been delineated to identify how a networked system represents 

developmental transitions at different orders of hierarchical complexity (OHC), or developmental stages 
as defined by the Model of Hierarchical Complexity (MHC). In this work, the number of units and the 
connectivity pattern have been experimented as variables for the network structure. A methodology was 
conducted to ensure that the minimal structural model was selected for solving each problem at each 
stage. After the training and selection processes, models for adjacent complexity problems were 
structurally compared and three structural progressions could be identified. Importantly, the model 
structure for each complexity problem was searched separately and independently, which allows to infer 
that the OHC is a valid and reliable measure to capture the complexity of problem solving and that neural 
networks capture this problem dimension in the dynamics of problem solving. 

First, results showed that segregating inputs by disjoint OHC led to the best performance of 
networks in the formal-order subtasks (torque difference calculus) among the literature (M. Dawson  
& Zimmerman, 2003; Hofman et al., 2015; Maas et al., 2007; McClelland, 1988, 1995; Rijn et al., 2003; 
Shultz et al., 1994, 1994; Shultz & Schmidt, 1991). Until now, the torque difference problem has not been 
solved with 100% accuracy, nor with stability. Second, more than one transition pattern was found, which 
points towards the dynamic of self-organization. Actually, three structural progressions were identified, 
with similar accuracy results and with interesting similarities across transitions. 

Regarding the similarities across all three progressions, two types of transitions were found: 
memory-based and operationally-based transitions. Memory-based occurred in the transitions below 
formal stages — from concrete stage 9 to abstract stage 10 — with no change in the number of nodes and 
a slight increase in the number of active connections, i.e., memory resources. This is aligned with the 
proposal of the Model of Hierarchical Complexity regarding the process of hierarchical integration as the 
dynamics of stage transition. Hierarchical integration refers to the idea that two or more lower order 
actions become object of non-arbitrary combination at the emergent order. This process has been 
compared to the process of working memory increase by chunking blocks of information, increasing 
working memory capacity throughout development (Duran et al., 2018; Kesteren et al., 2012). Below 
formal stages individuals operate with increasing concrete information, requiring an increase in working 
memory resources, until they transform it into abstract information. Differently, the present work suggests 
that operationally-based transitions occurred in the transition to and above the formal stages, relying upon 
a change in the structure, requiring more nodes and more connections. In these formal and post-formal 
stages, individuals become able to operate with abstract information. In this experiment, this was 
consistently shown by a boost in the recruited structural resources. 

Analyzing each individual progression across transitions, interesting parallelisms are found, too, 
between the increase in the number of nodes and the increase in the number of connections. In the first 
scenario, there is an increase of 120% in both the number of nodes and connections from abstract to 
formal and a decrease of 50% from formal to systematic. In the second option, there is an increase of 80% 
in the number of neurons and connections, which maintains stable during the systematic performance. In 
the third option, there was an increase of 80% in the number of neurons and connections, which increased 
again by 50% in the number of nodes and in 25% in the number of connections in the transition to the 
systematic stage. 

Limitations of this work concern the operations that were being learned at the concrete and 
abstract orders — counting and sum — which conflict with the mathematical nature of neural network 
models and justify that the model structure for these orders is the simplest. Even so, the memory-based 
transition is worth exploring in future work in the domain of pre-formal stages. Future work also concerns 
the simulation of more complex configurations, namely quadratic sum, to continue exploring the increase 
in structural complexity throughout post-formal simulations. 
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